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Backg round:  Campylobacter is a leading g lobal cause 
of bacterial gastroenteritis,  motivating research 
to identify sources of human infection. Population 
genetic studies have been increasing ly appl ied to 
this end,  mainly using multilocus sequence typing 
(MLST) data. Objectives:  This review aimed to sum-
marise approaches and findings of these studies 
and identify best practice lessons for this form of 
genomic epidemiolog y. Methods:  We systematically 
reviewed publications using MLST data to attrib-
ute human disease isolates to source. Publications 
were from January 2001, when this type of approach 
began.  Searched databases included Scopus, Web 
of Science and PubMed. Information on samples and 
isolate datasets used, as well as MLST schemes and 
attribution algorithms employed,  was obtained. Main 
findings were extracted, as well as any results’ val ida-
tion with subsequent correction for identified biases. 
Meta-analysis is not reported g iven high levels of 
heterogeneity. Results:  Of 2,109 studies retrieved 
worldwide, 25 were included, and poultry, specifi-
cally chickens, were identified as principal source of 
human infection. Ruminants (cattle or sheep) were 
consistently implicated in a substantial proportion of 
cases. Data sampling and analytical approaches var-
ied, with five different attribution algorithms used. 
Val idation such as self-attribution of isolates from 
known sources was reported in five publ ications. No 
publication reported adjustment for biases identified 
by val idation. Conclusions:  Common gaps in val ida-
tion and adjustment highl ight opportunities to gener-
ate improved estimates in future genomic attribution 
studies. The consistency of chicken as the main source 
of human infection, across high income countries, and 
despite methodolog ical variations, highl ights the pub-
lic health importance of this source.

Introduction
Campylobacter  gastroenteritis is a leading cause of 
acute bacterial gastroenteritis in high, low, and middle 

income countries. The number of confirmed cases has 
continued to increase across countries of the European 
Union (214,000 in 2013 to 246,000 in 2016 and 2017) [1],  
and over 800,000 cases are estimated to occur annu-
ally in the United States (data from 2000 to 2008) [2]. 
In low income countries Campylobacter is increasingly 
implicated in growth faltering among children under 
2 years of age [3].

Chicken products have been identified as an important 
risk factor for human infection by a variety of tech-
niques including natural experiments, case–control 
studies, and increasingly by the application of geno-
typic methods [4-10]. Other infection sources identified 
by observational epidemiological studies include cat-
tle, sheep, pigs, wild birds and the environment [10].

Alongside epidemiological studies there has been an 
increasing use of population genetic analyses to attrib-
ute human cases to likely sources. In these analyses, 
the genetic diversity of isolates from humans is com-
pared with that of collections of Campylobacter isolates 
obtained from possible sources of infection, allowing 
quantitative attribution to these sources.

Multilocus sequence type (MLST) data [8] have become 
the standard data used in such population genetic 
analyses, the results of which are generally consistent 
with the findings from epidemiological analyses [11,12]. 
Large collections of isolates have been sequenced 
at the MLST loci from a wide range of sources. The 
approaches provide a potential means of monitoring 
change in sources of human infection, for example 
those that occur as a consequence of public health and 
food chain interventions [13]. Insights obtained from 
seven-gene MLST analyses can also inform analyses 
using more extensive genomic data, as large well sam-
pled datasets of whole genome sequenced (WGS) iso-
lates accumulate from humans and putative sources. 
Other techniques such as multip lex PCR, PFGE, and 
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comparative genomic fingerprinting have neither been 
taken up widely nor offer compatibility with whole 
genome based approaches.

Studies analysing MLST data vary in terms of both the 
analytical algorithm applied and the reference data-
sets used [13-18] (‘reference’ data throughout this 
paper describe data from known reservoirs such as 
animal species that can act as sources of human infec-
tion). Here, our objectives on the use of MLST analysis 
to attribute infection in human populations to sources 
are to:  (i) summarise the findings from these studies to 
date;  (ii ) describe the approaches used;  and (iii ) iden-
tify lessons to guide further genetic source attribution 
work using these data and more extensive genomic 
data as they become available.

Methods

Search strategy
The literature search strategy aimed to identify arti-
cles attributing  Campylobacter  isolates from human 
infections to possible sources using MLST-based 
attribution algorithms. Systematic searches were 
performed on the Scopus, Web of Science, and PubMed 
databases using a search string comprised of the 
following terms:  ‘campylobacter$’ AND ‘multilocus OR 
genotype OR genotyping’ AND ‘source$ OR assignment 
OR attribution’ AND ‘human OR clinical OR disease’. 
These were carried out on 23 November 2017 and lim-
ited to items published from January 2001 onwards, as 
the C. jejuni MLST scheme was first described in this 
year [8].

The publication lists arising from the three searches 
were combined and duplicate records removed. Titles 
and abstracts of the remaining studies were reviewed 
to ensure that they described the source attribution 
of clinical C. jejuni and/or C. coli  isolates to potential 
source populations using an MLST-based algorithm, in 
English. Complete texts of the final list were then con-
sidered to identify whether or not they satisfied the 
inclusion criteria.  Reference sections of these papers 
were also searched for further candidate publications.

Texts of the resulting article list were scrutinised to 
identify:  (i ) datasets used, including their size, geo-
graphical orig in,  and year of disease and potential 
source isolates;  (ii ) sample types from which isolates 
were obtained, e.g. retail chicken meat, cattle faecal 
sample;  (i ii ) attribution method(s) employed;  (iv) loci 
in the typing scheme;  (v) validation, such as self-attri-
bution of isolates from known sources;  (vi) adjustment 
of attribution to correct for identified biases;  (vii) pro-
portion of Campylobacter clinical isolates attributed to 
each source.

When relevant details were not in the text, values were 
calculated from available data or obtained by contact-
ing the authors where possible. In articles that com-
pared results from more than one dataset, for example 

comparing clinical samples among different years or 
rural vs urban disease samples,  baseline or mean val-
ues are reported in this review.

Statistical analysis
The proportions of human infection with  C. 
jejuni attributed to poultry estimated by the two most 
commonly used algorithms (Asymmetric Island (AI) [17] 
and STRUCTURE [19]) were compared by the two-group 
mean comparison test and variation in this propor-
tion across studies described using the I2  index from 
the metaprop command using StataIC 15 (StataCorpLP, 
Texas).

Results
Search results and subsequent exclusions, detailed in 
the preferred reporting items for systematic reviews 
and meta-analyses (PRISMA) flow diagram (Figure 1) 
and Table, resulted in 25 articles [13,14,16,17,20-41].

Datasets
Twelve papers only investigated C. jejuni [13,14,16 ,17,21-
24,27,28 ,35, 41] and three studied only C. coli [32,34,37]. 
Of the 10 publications that considered both  C. 
jejuni  and  C. coli  [25,26 ,29-31,33,36,38 ,39, 42],  six 
expressed results by single species [25,26 ,29,30 ,33,36] 
and four reported attribution for the two species 
jointly [31,38 ,39, 42]. Studies included human clini-
cal isolates from the United Kingdom (n =  9 studies),  
New Zealand (n =  5),  the Netherlands (n =  3),  Germany 
(n =  2),  Luxembourg (n =  2),  Switzerland (n =  2),  Austria,  
Canada,  Denmark , France, Italy and Slovenia (n =  1 
study each) (Supplementary Table).

Fifteen articles reported using reference datasets that 
combined isolates from more than one potential animal 
host species or animal species and an environmental 
reservoir as a single class. Poultry datasets contain-
ing predominantly chicken but including other farmed 
birds were used as an attribution source in five articles 
[14,27,29 ,32,35],  cattle and sheep isolates combined 
as ruminants in six reports [21,29 ,32,36,37, 41] and 
an environmental category comprising at least water 
and wild bird isolates in 11 [13,16,27,30-32,35-38, 43]. 
A single sample type (e.g. retail meat or faeces) was 
considered for each host animal species in reference 
datasets from five studies [22,28 ,32,39, 40] rather than 
combining isolates across different sample types from 
the same source.

The highest number of potential source populations 
to which disease isolates were attributed was eight 
[17] and the lowest two [26],  with reference datasets 
ranging in size from two [29] to 1,288 [21,36] samples, 
across the articles reviewed (Supplementary Table).  
Eleven publications used source isolates from the 
same time period as human cases [13,16,21,24,26-
28,34,35,37, 40],  with the maximum possible temporal 
difference between any human and any source isolate 
ranging between 1 and 12 years in these. The long-
est time difference between human case and source 
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isolates among the remaining articles was 28 years 
[38].

One study explicitly considered domestic (with no 
history of international travel) and travel-associated 
human cases separately [14] and one compared attri-
bution results of clinical samples from two coun-
tries [41]. Reference datasets were limited to the 
same country as the clinical isolates in 10 studies 
[13,16,26,28 ,32,34,35,39 , 40, 43] and an eleventh article 
compared domestic human case isolates with those of 
travel-associated cases [14]. Two further publications 
included reference data from non-domestic sources 
having established that these countries shared simi-
lar disease genotype frequencies as domestic human 
cases [23,30],  and a third compared attribution results 
using reference MLST data from the same country 
as the cases and from different countries [38]. The 

remaining articles used reference isolates from inter-
nationally widespread locations.

Attribution models and data
The studies included used one or more of five attribu-
tion algorithms:  (i) the Asymmetric Island (AI) model 
(n =  13 reports) [17];  (ii ) STRUCTURE (n =  11) [19];  (i ii ) the 
Modified Hald (MH) model (n =  4) [16];  (iv) the Dutch 
model (n =  2) [44];  and (v) the Hald model (n =  1) [45] 
(Supplementary Table). Twenty-four of the publications 
reported data based on the seven housekeeping genes 
orig inally described by Dingle [7,8] and a single article 
identified and used 15 novel host-segregating loci [41]. 
Clinical datasets composed of both  C. jejuni  and  C. 
coli,  and those that considered the two species 
individually,  were analysed using either STRUCTURE 
or AI analysis,  whereas studies using the Dutch, Hald,  
and MH attribution models were restricted to analy-
ses of  C. jejuni  (Supplementary Table). Five of the 
25 articles used more than one attribution method 
[13,14,24,35,36],  although one of these only reported 
results from a single model [35].

Self-attribution and other validation
Self-attribution estimates the probability that, for exam-
ple, a chicken-origin isolate will be attributed back to 
the chicken host reference sample, and repeats this to 
measure accuracy. These analyses were performed in 
five of the articles using the AI,  STRUCTURE, or both 
algorithms, and reported average percentage accuracy 
values for each source tested [26,36-38, 41]. For both C. 
jejuni [36],  and C. coli [26,37,38 , 41] AI showed greater 
self-attribution accuracy than the STRUCTURE algo-
rithm. No publication reported adjustment of subse-
quent attribution of isolates from human cases based 
on bias identified in self-attribution.

Attribution results
Attribution of human C. jejuni isolates to poultry using 
seven-locus MLST by the AI model ranged between 57%  
and 83%  [13,14,17,23,24,29,30 ,33,36];  by STRUCTURE 
between 44%  and 77%  [22,25-28,36, 41, 46];  the Dutch 
model between 52%  and 58%  [13,24];  the Hald model 
52%  [14];  and the MH model between 62%  and 80%  
[13,16,24,35] (Figure 2 and Supplementary Table). In all 
four studies reporting results from C. jejuni  datasets 
using more than one attribution algorithm, the AI 
model attributed higher proportions to poultry than 
other methods [13,14,24,36].  The one study using 
STRUCTURE analysis of 15 alternative  C. jejuni  loci 
attributed 57%  to poultry [41]. The variation across 
estimates for attribution to poultry among stud-
ies, as determined by the I2  index, was greater than 
90%  for both AI and STRUCTURE analyses,  showing 
substantial between-study variation so that a single 
summary estimate of results by method or overall is 
not supported (Figure 2).

Between 38.0%  and 82. 4%  of human  C. coli  were 
estimated to come from poultry in studies using the 

Fig ur e 1

Flow diagram of the search strategy used to identify 
articles for inclusion in the systematic review on source 
attribution of human campylobacteriosis using multilocus 
sequence typing, since January 2001
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MLST:  multilocus sequence typing.

a The search terms were broad and brought in diverse articles 
with a very diverse corresponding set of reasons for exclusion, 
including articles that had no relation with source attribution as 
well as those using other approaches. No useful summary of this 
diversity was possible.
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AI model [29 ,30,32,33,36,37],  and between 40.0%  and 
86.4%  using STRUCTURE [25,26,34,36].

Where both C. jejuni and C. coli species results were 
reported together, the AI model attributed between 
68%  and 77%  to poultry [31,38] and STRUCTURE iden-
tified a range of between 19%  and 48.7%  [39, 40]. 
Studies using the AI model were found to attribute 
significantly more  C. jejuni  isolates to poultry than 
STRUCTURE (p =  0.007),  but no difference was detected 
for C. coli  isolates attributed to poultry by these two 
methods.

In all articles that reported the attribution of  C. 
jejuni to poultry, cattle and other sources, using seven-
locus MLST, cattle were the second most predominant 
source identified by all methods with the exception 
of one STRUCTURE and one AI analysis that identified 
sheep [22] and pets [33] as the second most preva-
lent sources, respectively. Where cattle and sheep 
were considered together they were the second most 
prevalent C. jejuni source identified regardless of the 

algorithm used in three seven-locus MLST studies 
[21,29,36].
Ruminants were identified as the predominant source 
of clinical C. coli in one AI analysis [32], and sheep in 
one STRUCTURE analysis [34], while equal proportions 
of disease were attributed to poultry and sheep in a 
further STRUCTURE analysis [36]. In the five remain-
ing AI [29 ,30 ,33,36,37] studies and one STRUCTURE 
[25] study considering the sources of human  C. 
coli  infection, poultry were the predominant source, 
followed by either cattle or a combined ruminant class.

The two studies that reported AI analyses of com-
bined C. jejuni and C. coli datasets [31,38] both identi-
fied poultry as the primary and cattle as the secondary 
sources of disease. One STRUCTURE analysis of both 
species, comparing attribution at three time periods, 
reported poultry as the main disease source, with the 
secondary source changing from cattle to sheep in the 
final study period [40]. A further STRUCTURE analy-
sis investigating the sources of C. jejuni and C. coli in 
children in urban and rural settings found poultry to 

Tabl e

Summary of studies reviewed, indicating composition of reference datasets used for attribution analysis of 
human Campylobacter infections to animal or environmental sources, 2001−2017 (n = 25 studies)

Paper 
 
(author/year)

Poultry/chicken Ruminant/cattle/sheep
Environmental/wild bird 

dataset(s)

Multiple 
sample 

types per 
source

Number of source 
populations

Years (max) 
between clinical and 

reference isolatesC. jejuni C. coli

Bessell (2012) [46] Chicken Ruminant W ild bird Yes 3 NA 16

Boysen (2014) [14] Poultry Cattle NA Yes 5 NA 1a

Cody (2015) [22] Chicken Cattle,  sheep W ild bird No 4 NA 14

Di Giannatale (2016) [23] Chicken Cattle,  small ruminant W ild b ird , environmental Yes 6 NA No data

French (2008) [24] Chicken Cattle,  sheep W ild b ird , environmental water Yes 5 NA 3a

Jonas (2015) [25] Chicken Cattle NA Yes 3 3 6

Kittl (2013) [26] Chicken NA NA Yes 2 2 10 a

Kovac (2018) [27] Poultry Cattle Environmental (inc. wild birds) Yes 3 NA 12a

Levesque (2013) [28] Chicken Cattle Environmental water,  wild bird No 4 NA 2a

Mossong (2016) [29] Poultry Ruminant Environmental water Yes 4 4 10

Mughini Gras (2012) [30] Chicken Cattle,  sheep Environmental (inc. wild birds) Yes 5 5 13

Mughini Gras (2013) [31] Chicken Cattle,  sheep Environmental (inc. wild birds) Yes 5 5 13

Mullner (2009a) [16] Chicken Cattle,  sheep Environmental (inc. wild birds) Yes 4 NA 3a

Mullner (2009b) [13] Chicken Cattle,  sheep Environmental (inc. wild birds) Yes 4 NA 3a

Nohra (2016) [32] Poultry Ruminant Environmental water No NA 3 5

Rosner (2017) [33] Chicken Cattle NA Yes 5 5 10

Roux (2013) [34] Chicken Cattle,  sheep NA Yes NA 4 1a

Sears (2011) [35] Poultry Cattle,  sheep Environmental water Yes 4 NA 3a

Sheppard (2009) [36] Chicken Ruminant Environmental (inc. wild birds) Yes 3b 5b 16

Sheppard (2010) [37] Chicken Ruminant Environmental (inc. wild birds) Yes NA 5 6

Smid (2013) [38] Chicken Cattle,  sheep Environmental (inc. wild birds) Yes 4 4 28

Strachan (2009) [39] Chicken Cattle,  sheep W ild bird No 5 5 6

Strachan (2013) [40] Chicken Cattle,  sheep W ild bird No 5 5 2a

Thépault (2017) [41] Chicken Ruminant Environmental water Yes 3 NA 10

W ilson (2008) [17] Chicken Cattle and sheep W ild b ird , water,  sand Yes 8 NA 12

Inc. :  including;  NA:  not appl icable,  whereby this species (C. jejuni or C. coli ) or possible source was not included in the study.
a Clinical and attribution datasets from same temporal range.
bC. jejuni results expressed for ruminants;  C. coli results expressed for cattle and sheep separately.
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be the predominant source followed by cattle in urban 
areas, but cattle as the prevalent and wild birds as the 
secondary sources in rural areas [39].

Discussion
This review supports poultry and ruminants as the 
main sources of human campylobacteriosis across 
the settings investigated , with more than half of 
human campylobacteriosis cases attributed to poultry. 
Studies varied in the populations investigated, algo-
rithms used, and approaches to choosing reference 
datasets for potential sources, but consistently identi-
fied the importance of poultry as a source. All studies 
were from high-income countries, with a substantial 
evidence gap for low- and middle-income countries.

Between-study comparisons were limited by the wide 
range of approaches used. Many enhanced the size of 
reference populations by access to publicly available 
datasets alongside more limited local data, sometimes 
using source data distant from the human isolate data-
sets, while others were limited to smaller reference 
datasets closer in time and place to the human infec-
tions. Although host-associated genetic signal has 
been shown to be stronger than the effects of geog-
raphy [20],  geographical distance among isolates from 

a single host source has the potential to cause bias in 
attribution analyses [20, 47].  Smid and colleagues [38] 
investigated a range of factors affecting the outcome of 
AI attribution and identified that the inclusion of non-
contemporaneous data and data from other countries 
reduced the attribution of Dutch disease isolates to 
chicken. Other authors used principal component anal-
ysis,  to determine the most suitable countries of isolate 
origin for inclusion in attribution datasets [30,31,33]. 
Temporal separation between isolates may also cre-
ate bias, with more pronounced effects reported for C. 
coli than C. jejuni populations [26]. There is no defini-
tive evidence on the relative benefits of having larger 
more diverse reference datasets from potential sources 
of infection, or smaller ones closer to the human case 
isolates in time and place.

The number and composition of sources considered 
also varied across studies. Environmental isolates 
were considered as a proxy for other wild life sources 
in some, but frequently included water samples that 
can be contaminated by farm slurry, agricultural run-
off,  or the disposal of abattoir effluent, as well as by 
wild animals [28 ,30];  indeed, ruminants have been 
implicated in cases of drinking water contamination 
by these means [48]. Datasets acquired from publicly 
available database collections rarely detailed sample 
type and often included samples from more than one 
point in the food chain [13,14,17,23,25,26 ,30 ,31,33-
38, 41, 46 , 49,50]. Since all genotypes do not survive 
food processing procedures equally,  broiler farm 
samples may, for example, represent the exposure of 
most individuals to Campylobacter  from chicken less 
accurately than samples from retail poultry [51]. A 
combined ruminant (cattle and sheep) source popula-
tion rather than separate cattle and sheep datasets 
was used in some studies but not in others, further 
limiting comparability among investigations. These 
ruminant species may host substantially overlap-
ping Campylobacter populations [52].

The seven-locus MLST data used were primarily 
acquired using techniques described in the orig i-
nal publication of this methodology [8],  but which 
have now been largely superseded as whole genome 
sequence (WGS) data are more common. Despite this 
change, the backwards compatibility of the gene-by-
gene approach to WGS analysis permits extraction of 
the relevant internal gene fragment alleles for use in 
existing attribution methodologies, and also facilitates 
the identification of additional genes for use in such 
algorithms [53]. To date there has been only one publi-
cation detailing attribution using alternative loci iden-
tified from WGS, but as this study did not make any 
comparison with seven-locus MLST it was not possible 
to determine whether the novel methodology improved 
the accuracy of attributing generalist genotypes [41].

Comparison of results from different attribution mod-
els analysing the same datasets identified that the 
choice of model may be important. Results from the AI 

Fig ur e 2

Forest plot of the proportion of Campylobacter jejuni 
clinical isolates attributed to poultry by different studies, 
and uncertainty around these estimates

STRUCTURE

Bessell (2012) [46]

Cody (2015) [22]

Jonas (2015) [25]

Kittl (2013) [26 ]

Kovac (2018) [27]

Levesque (2013) [28]

Sheppard (2009) 36 ]]

Thepault (2017) [41]

Thepault (2017) [41]

Asymmetric Island

Boysen (2014) [14]

Di Giannatale (2016) [23]

French (2008) [24]

Mossong  (2016) [29]

Mughini Gras (2012) [30]

Mullner (2009b) [13]

Rosner (2017) [33]

Sheppard (2009) [36]

W ilson (2008) [17]

Dutch

French (2008) [24]

Mullner (2009b) [13]

Modied Hald

French (2008) [24]

Mullner (2009a) [13]

Sears (2011) [35]

Study

)

)

)

0.46 (0.45–0.48)

0.52 (0.51–0.53)

0.44 (0.39–0.49)

0.77 (0.73–0.80)

0.58 (0.46–0.69)

0.65 (0.57–0.71)

0.58 (0.57–0.59)

0.45 (0.31–0.60)

0.57 (0.51–0.63)

0.69 (0.64–0.73)

0.71 (0.53–0.84)

0.75 (0.71–0.79)

0.59 (0.56–0.62)

0.66 (0.62–0.70)

0.76 (0.72–0.80)

0.83 (0.80–0.86

0.78 (0.77–0.79)

0.57 (0.54–0.59)

0.52 (0.48–0.56

0.58 (0.54–0.62)

0.67 (0.63–0.71)

0.80 (0.77–0.83)

0.62 (0.58–0.66

Proportion (95%  CI)

  
0 .2 .4 .6 .8 1

Proportion from poultry

CI:  confidence interval .

I2 index > 90%  for STRUCTURE and Asymmetric Island models so no 
summary estimates are g iven.



6 www.eurosurveillance.org

and STRUCTURE algorithms demonstrated that the AI 
model attributed more human Campylobacter infection 
to poultry, whereas the STRUCTURE algorithm attrib-
uted a higher proportion to ruminants [36]. These 
observations were confirmed by assessment of data 
from across all  C. jejuni  studies using these two 
algorithms where AI attributed a larger proportion to 
poultry.

The same pattern of results was observed when the 
AI,  MH, and Dutch models were used to analyse highly 
similar C. jejuni  datasets in two publications [13, 43];  
in all analyses poultry was predominant but the extent 
of this was more extreme with AI than with the MH or 
Dutch algorithms. In addition, the Dutch model identi-
fied environmental and wild-bird sources as causing a 
greater number of disease cases than either the AI or 
MH models.

Only in five studies was the accuracy of the attribution 
approach tested. Some evidence suggested that AI self-
attributed poultry more accurately than STRUCTURE, 
although there is also grey literature reporting the 
opposite [54]. No study described adjustment of the 
raw results obtained in attributing human isolates for 
the biases estimated in self-attribution tests.

This systematic review brings together compelling 
evidence for poultry as the major source of human 
campylobacteriosis,  with consistent results across 
several countries, time periods, and using different 
analytical algorithms and approaches to assembling 
isolate data from potential sources. The studies were 
mainly from Europe and New Zealand and highlight the 
gap in evidence for low and middle-income countries 
where  Campylobacter  may have a particularly large 
health burden [3]. This review also shows marked limi-
tations as regards quality and comparability,  with most 
studies not assessing their own accuracy. Moreover, 
none of the studies that measured accuracy and bias 
used this to adjust estimates of the proportion of 
human infection from each potential source or perform-
ing sensitivity analysis.  The lack of evolution towards 
agreed optimal methods in the context of almost all 
studies using the same MLST data is strik ing. As WGS 
data become increasingly available, allowing the use 
of different genetic data across studies, moving to a 
consistent or optimum approach may be even more 
difficult although important to ensure comparability. 
The performance of tests of accuracy and bias such 
as self-attribution,  and sensitivity analyses to take 
account of imperfect source attribution will be even 
more important. We recommend that validations, using 
approaches such as attribution of isolates from known 
sources, and adjustment for biases that are identified 
should be included in future population genetic source 
attribution studies and reports.

Acknowledgements

This work was supported by the United Kingdom Food 
Standards Agency [grant number FS101013];  the Wellcome 
Trust [grant numbers 087622 to M.C.J.M. ,  072782MA to 
N.D.M.];  and National Institute for Health Research Health 
Protection Research Unit (NIHR HPRU) in Gastrointestinal 
Infections at the University of Oxford in partnership with 
Public Health England (PHE). The views expressed are those 
of the author(s) and not necessarily those of the FSA, NHS, 
the NIHR,  the Department of Health or Public Health Eng land.

Conflict of interest

None declared.

Authors’ contributions
Alison Cody undertook the l iterature searches,  analysis and 
writing of the first draft as well as revisions of the work. Noel 
McCarthy conceived and led the study, undertook some anal-
yses and edited manuscript drafts and this revision. Norval 
Strachan and Martin Maiden contributed to planning of the 
work and reviewed and edited drafts of the manuscript.

References
1. European Food Safety Authority (EFSA). The European 

Union Summary Report on Trends and Sources of Zoonoses, 
Zoonotic Agents and Food-borne Outbreaks in 2017. EFSA J. 
2018;16(12):5500.  https://doi.org/10.2903/j.efsa.2018.5500 

2. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, 
Roy SL, et al .  Foodborne il lness acquired in the United States-
-major pathogens. Emerg Infect Dis.  2011;17(1):7-15.  https://
doi.org/10.3201/eid1701.P11101  PMID:  21192848 

3. Amour C,  Gratz J, Mduma E, Svensen E, Rogawski ET, McGrath 
M, et al . .  Epidemiology and Impact of Campylobacter Infection 
in Children in 8 Low-Resource Settings: Results From the 
MAL-ED Study. Clin Infect Dis.  2016;63(9): 1171-9.  https://doi.
org/10.1093/cid/ciw542  PMID:  27501842 

4. Friesema IH,  Havelaar AH, Westra PP, Wagenaar JA, van Pelt 
W. Poultry culling and Campylobacteriosis reduction among 
humans, the Netherlands. Emerg Infect Dis.  2012; 18(3): 466-8 .  
https://doi.org/10.3201/eid1803.111024  PMID:  22377498 

5. Stern NJ, Hiett KL, Alfredsson GA, Kristinsson KG,  Reiersen 
J, Hardardottir H, et al . Campylobacter spp. in Icelandic 
poultry operations and human disease. Epidemiol 
Infect. 2003;130(1):23-32.  https://doi.org/10.1017/
S0950268802007914  PMID:  12613742 

6. Vell inga A, Van Loock F. The dioxin crisis as experiment 
to determine poultry-related Campylobacter enteritis.  
Emerg Infect Dis. 2002;8(1): 19-22.  https://doi.org/10.3201/
eid0801.010129  PMID:  11749743 

7. Ding le KE, Colles FM, Falush D, Maiden MC. Sequence typing 
and comparison of population biology of Campylobacter coli 
and Campylobacter jejuni.  J Clin Microbiol .  2005; 43(1):340-
7.  https://doi .org/10.1128/JCM.43.1.340-347.2005  PMID:  
15634992 

8 . Ding le KE, Colles FM, Wareing DRA, Ure R, Fox AJ,  Bolton FE, 
et al . Multilocus sequence typing system for Campylobacter 
jejuni. J Cl in Microbiol . 2001;39(1):14-23.  https://doi.
org/10.1128/JCM.39.1.14-23.2001  PMID: 11136741 

9. Ikram R, Chambers S, Mitchell P, Brieseman MA, Ikam OH. A 
case control study to determine risk factors for Campylobacter 
infection in Christchurch in the summer of 1992-3. N Z Med J. 
1994; 107(988): 430-2. PMID:  7970341 

10. Domingues AR, Pires SM, Halasa T, Hald T. Source attribution 
of human campylobacteriosis using a meta-analysis of 
case-control studies of sporadic infections. Epidemiol 
Infect. 2012;140(6): 970-81.  https://doi .org/10.1017/
S0950268811002676  PMID: 22214729 

11. Ding le KE, Colles FM, Ure R, Wagenaar JA, Duim B, Bolton FJ,  et 
al .  Molecular characterization of Campylobacter jejuni clones:  
a basis for epidemiolog ic investigation. Emerg Infect Dis. 
2002;8(9):949-55.  https://doi.org/10.3201/eid0809.02-0122  
PMID:  12194772 

12. Sheppard SK, Dallas JF, MacRae M, McCarthy ND, Sproston EL,  
Gormley FJ, et al . Campylobacter genotypes from food animals,  
environmental sources and clinical disease in Scotland 2005/6. 

https://doi.org/10.2903/j.efsa.2018.5500
https://doi.
https://doi.org/10.3201/eid1803.111024
https://doi.org/10.1017/
https://doi.org/10.3201/
https://doi.org/10.1128/JCM.43.1.340-347.2005
https://doi.
https://doi.org/10.1017/
https://doi.org/10.3201/eid0809.02-0122


7www.eurosurveillance.org

Int J Food Microbiol .  2009;134(1-2):96-103.  https://doi.
org/10.1016/j. ijfoodmicro.2009.02.010  PMID:  19269051 

13. Mullner P, Spencer SE, Wilson DJ, Jones G, Noble AD, Midwinter 
AC, et al . Assigning the source of human campylobacteriosis 
in New Zealand:  a comparative genetic and epidemiolog ical 
approach. Infect Genet Evol .  2009;9(6):1311-9.  https://doi.
org/10.1016/j.meegid.2009.09.003  PMID:  19778636 

14. Boysen L, Rosenquist H, Larsson JT, Nielsen EM, 
Sørensen G, Nordentoft S, et al . Source attribution 
of human campylobacteriosis in Denmark. Epidemiol 
Infect. 2014;142(8):1599-608.  https://doi.org/10.1017/
S0950268813002719  PMID:  24168860 

15. McCarthy ND, Colles FM,  Ding le KE, Bagnall MC, Manning 
G, Maiden MC, et al . Host-associated genetic import in 
Campylobacter jejuni.  Emerg Infect Dis. 2007;13(2):267-72.  
https://doi.org/10.3201/eid1302.060620  PMID:  17479890 

16. Mullner P, Jones G, Noble A,  Spencer SE, Hathaway S, French 
NP. Source attribution of food-borne zoonoses in New Zealand:  
a modified Hald model . Risk Anal . 2009;29(7): 970-84.  https://
doi.org/10.1111/j.1539-6924.2009.01224. x  PMID:  19486473 

17. Wilson DJ, Gabriel E, Leatherbarrow AJH, Cheesbrough J, Gee S, 
Bolton E, et al .  Tracing the source of campylobacteriosis. PLoS 
Genet.  2008; 4(9):e1000203.  https://doi.org/10.1371/journal .
pgen.1000203  PMID: 18818764 

18 . mlstdbNet Home Page. Available at:  http://pubmlst.org/
software/database/mlstdbnet/

19. Pritchard JK,  Stephens M, Donnelly P. Inference of population 
structure using multilocus genotype data. Genetics. 
2000;155(2):945-59. PMID:  10835412 

20. Sheppard SK, Colles F, Richardson J, Cody AJ, Elson R, Lawson 
A, et al .  Host association of Campylobacter genotypes 
transcends geographic variation. Appl Environ Microbiol . 
2010; 76(15):5269-77.  https://doi.org/10.1128/AEM.00124-10  
PMID:  20525862 

21. Bessell PR, Rotariu O, Innocent GT, Smith-Palmer A, Strachan 
NJ, Forbes KJ,  et al .  Using sequence data to identify alternative 
routes and risk of infection:  a case-study of Campylobacter 
in Scotland. BMC Infect Dis. 2012;12(1):80.  https://doi.
org/10.1186/1471-2334-12-80  PMID: 22462563 

22. Cody AJ, McCarthy ND, Bray JE, Wimalarathna HM, Colles 
FM, Jansen van Rensburg MJ, et al .  Wild bird-associated 
Campylobacter jejuni isolates are a consistent source of human 
disease, in Oxfordshire,  United Kingdom. Environ Microbiol 
Rep. 2015; 7(5): 782-8 .  https://doi.org/10.1111/1758-2229.12314  
PMID:  26109474 

23. Di Giannatale E, Garofolo G, Alessiani A, Di Donato 
G,  Candeloro L, Vencia W, et al .  Tracing Back Clinical 
Campylobacter jejuni in the Northwest of Italy and Assessing 
Their Potential Source. Front Microbiol .  2016;7:887.  https://
doi.org/10.3389/fmicb.2016.00887  PMID:  27379033 

24. French NP. Enhancing Surveillance of Potentially Foodborne 
Enteric Diseases in New Zealand:  Human Campylobacteriosis 
in the Manawatu. Final report:  FDI / 236/2005 2008. [Accessed 
19 Nov 2018].  Available from:  https://www. foodsafety.govt.nz/
el ibrary/industry/enhancing-surveillance-potentially-research-
projects-2/Campy_ Attribution_ Manawatu.pdf

25. Jonas R, Kittl S, Overesch G, Kuhnert P. Genotypes and 
antibiotic resistance of bovine Campylobacter and their 
contribution to human campylobacteriosis. Epidemiol 
Infect. 2015;143(11):2373-80.  https://doi.org/10.1017/
S0950268814003410  PMID:  25511436 

26. Kittl S, Heckel G, Korczak BM, Kuhnert P. Source attribution 
of human Campylobacter isolates by MLST and fla-typing and 
association of genotypes with quinolone resistance. PLoS 
One. 2013;8(11):e81796.  https://doi.org/10.1371/journal .
pone.0081796  PMID:  24244747 

27. Kovac J, Stessl B, Čadež N, Gruntar I,  Cimerman M,  Sting l 
K, et al .  Population structure and attribution of human 
clinical Campylobacter jejuni isolates from central Europe to 
livestock and environmental sources. Zoonoses Public Health.  
2018;65(1):51-8.  https://doi.org/10.1111/zph.12366  PMID:  
28755449 

28 . Lévesque S, Fournier E, Carrier N, Frost E, Arbeit RD, Michaud 
S. Campylobacteriosis in urban versus rural areas: a case-
case study integrated with molecular typing to validate 
risk factors and to attribute sources of infection. PLoS 
One. 2013;8(12):e83731.  https://doi.org/10.1371/journal .
pone.0083731  PMID:  24386265 

29. Mossong J, Mughini-Gras L, Penny C, Devaux A, Olinger C, 
Losch S, et al . Human Campylobacteriosis in Luxembourg, 
2010-2013:  A Case-Control Study Combined with Multilocus 
Sequence Typing for Source Attribution and Risk Factor 
Analysis.  Sci Rep. 2016;6(1):20939.  https://doi.org/10.1038/
srep20939  PMID:  26860258 

30. Mughini Gras L, Smid JH, Wagenaar JA, de Boer AG, Havelaar 
AH, Friesema IH, et al .  Risk factors for campylobacteriosis 

of chicken,  ruminant,  and environmental orig in:  a combined 
case-control and source attribution analysis.  PLoS One. 
2012;7(8):e42599.  https://doi.org/10.1371/journal .
pone.0042599  PMID: 22880049 

31. Mughini Gras L, Smid JH, Wagenaar JA, Koene MG, Havelaar 
AH, Friesema IH, et al . Increased risk for Campylobacter jejuni 
and C. col i infection of pet orig in in dog owners and evidence 
for genetic association between strains causing infection in 
humans and their pets. Epidemiol Infect. 2013;141(12):2526-35.  
https://doi.org/10.1017/S0950268813000356  PMID:  23445833 

32. Nohra A, Grinberg A, Midwinter AC, Marshall JC, Collins-
Emerson JM, French NP. Molecular Epidemiology of 
Campylobacter coli Strains Isolated from Different Sources in 
New Zealand between 2005 and 2014. Appl Environ Microbiol . 
2016;82(14): 4363-70.  https://doi.org/10.1128/AEM.00934-16  
PMID: 27208097 

33. Rosner BM, Schielke A, Didelot X, Kops F, Breidenbach J, 
Willrich N, et al . A combined case-control and molecular 
source attribution study of human Campylobacter infections 
in Germany, 2011-2014. Sci Rep. 2017;7(1):5139.  https://doi.
org/10.1038/s41598-017-05227-x  PMID:  28698561 

34. Roux F, Sproston E, Rotariu O, Macrae M, Sheppard SK, Bessell 
P, et al . Elucidating the aetiology of human Campylobacter 
col i infections. PLoS One. 2013;8(5):e64504.  https://doi.
org/10.1371/journal .pone.0064504  PMID:  23734204 

35. Sears A, Baker MG, Wilson N, Marshall J,  Muellner P, 
Campbell DM, et al . Marked campylobacteriosis decl ine after 
interventions aimed at poultry,  New Zealand. Emerg Infect Dis.  
2011;17(6): 1007-15.  https://doi.org/10.3201/eid/1706.101272  
PMID: 21749761 

36. Sheppard SK, Dallas JF, Strachan NJ, MacRae M, McCarthy ND, 
Wilson DJ, et al .  Campylobacter genotyping to determine the 
source of human infection. Clin Infect Dis.  2009; 48(8):1072-8 .  
https://doi.org/10.1086/597402  PMID:  19275496 

37. Sheppard SK, Dallas JF, Wilson DJ, Strachan NJ, McCarthy ND, 
Jolley KA, et al . Evolution of an agriculture-associated disease 
causing Campylobacter col i clade:  evidence from national 
surveillance data in Scotland. PLoS One. 2010;5(12):e15708.  
https://doi.org/10.1371/journal .pone.0015708  PMID:  21179537 

38. Smid JH, Mughini Gras L, de Boer AG,  French NP,  Havelaar 
AH, Wagenaar JA, et al . Practicalities of using non-local 
or non-recent multilocus sequence typing data for source 
attribution in space and time of human campylobacteriosis. 
PLoS One. 2013;8(2):e55029.  https://doi.org/10.1371/journal .
pone.0055029  PMID:  23405107 

39. Strachan NJ, Gormley FJ, Rotariu O, Ogden ID, Miller G, 
Dunn GM, et al .  Attribution of Campylobacter infections in 
northeast Scotland to specific sources by use of multilocus 
sequence typing. J Infect Dis. 2009;199(8):1205-8.  https://doi.
org/10.1086/597417  PMID: 19265482 

40. Strachan NJ, Rotariu O, MacRae M, Sheppard SK, Smith-Palmer 
A, Cowden J, et al . Operationalising factors that explain the 
emergence of infectious diseases: a case study of the human 
campylobacteriosis epidemic. PLoS One. 2013;8(11):e79331.  
https://doi.org/10.1371/journal .pone.0079331  PMID:  24278127 

41. Thépault A, Méric G, Rivoal K, Pascoe B, Mageiros L, 
Touzain F, et al . Genome-Wide Identification of Host-
Segregating Epidemiolog ical Markers for Source 
Attribution in Campylobacter jejuni . Appl Environ Microbiol .  
2017;83(7):e03085-16.  https://doi .org/10.1128/AEM.03085-16  
PMID:  28115376 

42. Strachan NJ, Rotariu O, Smith-Palmer A, Cowden J, Sheppard 
SK, O’Brien SJ, et al .  Identifying the seasonal orig ins of human 
campylobacteriosis.  Epidemiol Infect. 2013; 141(6): 1267-75.  
https://doi.org/10.1017/S0950268812002063  PMID: 22989449 

43. French NP, Midwinter A, Holland B, Col lins-Emerson J, Pattison 
R, Colles F, et al .  Molecular epidemiolog y of Campylobacter 
jejuni isolates from wild-bird fecal material in children’s 
playgrounds. Appl Environ Microbiol .  2009; 75(3): 779-83.  
https://doi.org/10.1128/AEM.01979-08  PMID:  19047378 

44. Van Pelt W, Van De Giessen AW,  Van Leeuwen WJ,  et al .  
Oorsprung, omvang en kosten van humane salmonellose. 
Deel 1.  Oorsprung van human salmonellose met betrekking 
tot varken, rund, kip,  ei en overige bronnen. Infectiezikten 
Bul letin.  1999:240-3.

45. Hald T, Vose D, Wegener HC, Koupeev T. A Bayesian approach 
to quantify the contribution of animal-food sources to human 
salmonellosis. Risk Anal . 2004;24(1):255-69.  https://doi.
org/10.1111/j.0272-4332.2004.00427. x  PMID:  15028016 

46. Bessell PR, Rotariu O, Innocent GT, Smith-Palmer A, Strachan 
NJ,  Forbes KJ, et al . Using sequence data to identify alternative 
routes and risk of infection:  a case-study of Campylobacter 
in Scotland. BMC Infect Dis.  2012; 12(1):80.  https://doi.
org/10.1186/1471-2334-12-80  PMID:  22462563 

47. Griekspoor P,  Colles FM, McCarthy ND, Hansbro PM, Ashhurst-
Smith C, Olsen B, et al . Marked host specificity and lack 

https://doi.
https://doi.
https://doi.org/10.1017/
https://doi.org/10.3201/eid1302.060620
https://doi.org/10.1371/journal.
http://pubmlst.org/
https://doi.org/10.1128/AEM.00124-10
https://doi.
https://doi.org/10.1111/1758-2229.12314
https://www.foodsafety.govt.nz/
https://doi.org/10.1017/
https://doi.org/10.1371/journal.
https://doi.org/10.1111/zph.12366
https://doi.org/10.1371/journal.
https://doi.org/10.1038/
https://doi.org/10.1371/journal.
https://doi.org/10.1017/S0950268813000356
https://doi.org/10.1128/AEM.00934-16
https://doi.
https://doi.
https://doi.org/10.3201/eid/1706.101272
https://doi.org/10.1086/597402
https://doi.org/10.1371/journal.pone.0015708
https://doi.org/10.1371/journal.
https://doi.
https://doi.org/10.1371/journal.pone.0079331
https://doi.org/10.1128/AEM.03085-16
https://doi.org/10.1017/S0950268812002063
https://doi.org/10.1128/AEM.01979-08
https://doi.
https://doi.


8 www.eurosurveillance.org

of phylogeographic population structure of Campylobacter 
jejuni in wild birds. Mol Ecol .  2013;22(5):1463-72.  https://doi.
org/10.1111/mec.12144  PMID:  23356487 

48 . Clark CG, Price L, Ahmed R, Woodward DL,  Melito PL, Rodgers 
FG, et al . Characterization of waterborne outbreak-associated 
Campylobacter jejuni ,  Walkerton, Ontario.  Emerg Infect Dis. 
2003;9(10):1232-41.  https://doi.org/10.3201/eid0910.020584  
PMID:  14609457 

49. Kovac J, Stessl B, Čadež N,  Gruntar I,  Cimerman M, Sting l 
K, et al . Population structure and attribution of human 
clinical Campylobacter jejuni isolates from central Europe to 
livestock and environmental sources. Zoonoses Public Health.  
2018;65(1):51-8. https://doi.org/10.1111/zph.12366  PMID:  
28755449 

50. Mossong J, Mughini-Gras L, Penny C, Devaux A, Olinger C, 
Losch S,  et al .  Human Campylobacteriosis in Luxembourg, 
2010-2013:  A Case-Control Study Combined with Multilocus 
Sequence Typing for Source Attribution and Risk Factor 
Analysis. Sci Rep. 2016;6(1):20939.  https://doi.org/10.1038/
srep20939  PMID:  26860258 

51. Yahara K,  Méric G, Taylor AJ, de Vries SP, Murray S, Pascoe 
B, et al .  Genome-wide association of functional traits linked 
with Campylobacter jejuni survival from farm to fork.  Environ 
Microbiol .  2017;19(1):361-80.  https://doi.org/10.1111/1462-
2920.13628  PMID: 27883255 

52. Ogden ID, Dallas JF,  MacRae M, Rotariu O, Reay KW, Leitch M, 
et al .  Campylobacter excreted into the environment by animal 
sources:  prevalence, concentration shed, and host association. 
Foodborne Pathog Dis.  2009;6(10): 1161-70.  https://doi.
org/10.1089/fpd.2009.0327  PMID:  19839759 

53. Maiden MCJ, Jansen van Rensburg MJ, Bray JE, Earle SG, Ford 
SA, Jolley KA, et al . MLST revisited:  the gene-by-gene approach 
to bacterial genomics. Nat Rev Microbiol .  2013;11(10):728-36.  
https://doi.org/10.1038/nrmicro3093  PMID:  23979428 

54. Food Standards Agency. Employing Source Attribution and 
Molecular Epidemiology to measure the impact of interventions 
on human campylobacteriosis in Scotland. Final Report. 
2018. [Accessed 19 Nov 2018].  Available from:  https://
www.foodstandards.gov.scot/downloads/Campylobacter_
Attribution_ Extension_ -_ University_ of_ Aberdeen_ -_
FSS00017_ -_ iCaMPS_ Report_ -_ FINAL_ -_ 13th_ Dec_ 2017.pdf

License, supplementary material and copyright
This is an open-access article distributed under the terms of 
the Creative Commons Attribution (CC BY 4.0) Licence. You 
may share and adapt the material ,  but must g ive appropriate
credit to the source, provide a link to the licence and indicate 
if changes were made. 

Any supplementary material referenced in the article can be 
found in the onl ine version.

This article is copyright of the authors or their affil iated in-
stitutions, 2019.

https://doi.
https://doi.org/10.3201/eid0910.020584
https://doi.org/10.1111/zph.12366
https://doi.org/10.1038/
https://doi.org/10.1111/1462-
https://doi.
https://doi.org/10.1038/nrmicro3093

