

Mosquito-borne infectious diseases measures in Tokyo (From the field of microbiological testing)

Tokyo Metropolitan Institute of Public Health Department of Microbiology Kenji Sadamasu

Countries of areas at risk of Dengue Fever

Data Source: World Health Organization Map Production: Control of Neglected Tropical Diseases (NTD) World Health Organization Global brief on vector-borne diseases(WHO,2014)

Mosquito species that cause infectious diseases

	Pathogenic agents	Mosquito species in Japan
Dengue fever	Family Flaviviridae Dengue virus	Aedes albopictus
Chikungunya fever	Family Togaviridae Chikungunya virus	Aedes albopictus
Zika virus infection	Family Flaviviridae Zika virus	Aedes albopictus
Japanese encephalitis	Family Flaviviridae Japanese encephalitis virus	Culex tritaeniorhynchus
Yellow fever	Family Flaviviridae Yellow fever virus	Aedes aegypti* * not inhabited in Japan
West Nile fever	Family Flaviviridae West Nile virus	Aedes albopictus 、Culex tritaeniorhynchus、Anopheles
Malaria	Plasmodium Marchiafava et Celli	Anopheles.sp

Mosquito-borne infectious diseases incidents in Japan / Tokyo

Year	2013	2014	2015	2016	2017	2018
Dengue fever	249	<u>341</u>	293	335	245	201
	(67)	(162)	(93)	<mark>(92)</mark>	(<mark>65)</mark>	(61)
Chikungunya fever	14	16	17	13	5	4
	(3)	(5)	(7)	(5)	(3)	(0)
Zika virus infection				12 (3)	5 (0)	0 (0)
Japanese	<u>9</u>	<u>2</u>	<u>2</u>	<u>11</u>	<u>3</u>	0
encephalitis	(0)	(0)	(0)	(0)	(0)	(0)
Yellow fever	0	0	0	0	0	0
	(0)	(0)	(0)	(0)	(0)	(0)
West Nile fever	0	0	0	0	0	0
	(0)	(0)	(0)	(0)	(0)	(0)
Malaria	40	57	37	53	61	50
	(12)	(27)	(16)	(18)	(27)	(14)

_: Including domestic infections in Japan

Flow of reporting Notifiable Diseases in Tokyo (including mosquito-borne infectious diseases)

RAPID COMMUNICATIONS Eurosurveillance, Volume 19, Issue 3, 23 January 2014

Autochthonous dengue virus infection in Japan imported into Germany, September 2013

J Schmidt-Chanasit (jonassi@gmx.de)^{1,2}, P Emmerich¹, D Tappe¹, S Günther¹, S Schmidt³, D Wolff³, K Hentschel⁴, D Sagebiel⁴, I Schöneberg⁵, K Stark⁵, C Frank⁵

- 1. Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany
- 2. German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany

Dublic Health Authority Stealitz. 7ehlendorf Rerlin Germany

In September 2013, the case infected Dengue virus type 2

Nine days before admission, she had returned from a two-week trip to Japan, during which she visited Ueda, Fuefuki, Hiroshima, Kyoto and Tokyo in August.

In Japan? I could not believe it.

Dengue Fever in 2014

Domestic infections in Japan

(Ministry of Health, Labor and Welfare report)

 Teenage women (Saitama prefecture) was the first patient, a total of 163 cases

Tokyo Metropolitan patients (108 cases)

- About 230 blood samples were tested (PCR-sequencing analysis, NS1, IgM)
- Mosquitoes captured in Yoyogi Park (PCR)

Profile of Dengue Fever Patients

2014, Tokyo

Patient No.	age	Gender	residence	Onset date	Did you go to Yoyogi Park?	Were you bitten by a mosquito?
1	10's	Female	Saitama	20 August	Yes	Yes
2	20's	Male	Tokyo	24 August	Yes	Yes
3	20's	Female	Saitama	18 August	Yes	Yes
-	-	-	-	_	_	-
138	50's	Male	Tokyo	10 September	Near the park	Yes
139	20's	Male	Tokyo	11 September	Shinjuku chuo Park	Yes
140	20's	Male	Tokyo	13 September	Near the park	Yes

Yoyogi Park, Tokyo

Method of catching mosquitoes (Light trap)

Daily reports of Dengue Fever in 2014, Tokyo (151 cases)

The practice of viruses testing from mosquitoes

Aedes albopictus

Mosquitoes

Aedes albopictus

1 Mosquitoes in 1.5mL tubes Max 30 mosquitoes/tube 35 mosquitoes \Rightarrow 2 tubes

30/tubes and 5/tubes

④ Crushing for 1 minute with Micro multi mixer

5 Centrifugation of 1.5mLtube (8,000rpm,10min) . Take 140 μL of the supernatant

QIA cube (Nucleic acid extraction machine)

12 samples/hour

Nucleic acid test results of Dengue virus of mosquitoes captured in Yoyogi Park

^{*1}sample : 30 mosquitoes /1.5mL tube

Nucleic acid test results of Dengue virus of mosquitoes collected in Yoyogi Park

	8/27-28	9/2-3	9/9-10	9/17-18	9/24-25	9/30/-10/1	10/7-8	10/20-21	11/6-7
Points	10	10	20	20	20	20	20	20	20
Mosquitoes number	38	276	348	191	41	23	14	11	1
NAT positives	(-)	(+)	(+)	(+)	(-)	(-)	(-)	(-)	(-)
$\begin{array}{c} 4/20 \text{ points} \\ (\underline{30,5},\underline{30,12},19,5) \\ \text{Mosquitoes } 4/10 \text{ points} \\ \text{number} \rightarrow (28,\underline{30,29},30,16) \end{array}$									

<u>Under bar : samples of the same point</u>

Dengue virus viral load(copy number) in mosquitoes

Short Report: Comparison of the Mosquito Inoculation Technique and Quantitative Real Time Polymerase Chain Reaction to Measure Dengue Virus Concentration

Milly M. Choy, Brett R. Ellis, Esther M. Ellis, and Duane J. Gubler*

Signature Research Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore, Republic of Singapore

FIGURE 1. Replication kinetics of DENV-2 (A) PR1940 and (B) PR6913 in adult female Aedes aegypti mosquitoes. Virus titers are measured by plaque assay (PFU/mosquito \blacktriangle), mosquito inoculation technique (MID₅₀/mosquito \blacksquare), and qRT-PCR (RNA copy number/mosquito \bullet). Each point represents the mean of three mosquitoes triturated individually and the error bars indicate standard error of the mean.

Mosquitoes are said to be sucking their blood(may be 2-2.5µL)

Quantitative results of Dengue virus type 1 in Yoyogi mosquitoes (in 2014)

Real-time PCR amplification curve

Dengue virus type 1 envelope gene analysis

Dengue virus type1

Match the First patient's sequence(LC002828)

Bownload v GenBank Graphics

Dengue virus 1 E gene for polyprotein, envelope region, partial cds, strain: D1/Hu/Saitama/NIID100/2014 Sequence ID: <u>dbjlLC002828.1</u> Length: 1485 Number of Matches: 1

Range 1: 500 to 1033 GenBank Graphics Vext Match 🛦 Previous Match						
Score		Expect	Identities	Gaps	Strand	
987 bits	(534)	0.0	534/534(100%)	0/534(0%)	Plus/Minus	
Query	1	CTCCTTTTTC	ATCTTGGGTCGAAAAA	GGATCTTGCATGG	IGCATCTGTTCCTTCGTATT	60
Sbjct	1033	CTCCTTTTTC	ATCTTGGGTCGAAAAA	GGATCTTGCATGG	IGCATCTGTTCCTTCGTATT	974
Query	61	TAATCTGCAC	TAGAACGGTTCCATGT	GGGTCTCAGCCAC	TTCTTTCTCTAGCTTGAATG	120
Sbjct	973	TAATCTGCAC	TAGAACGGTTCCATGT	GGGTCTCAGCCAC	TTCTTTCTCTAGCTTGAATG	914
Query	121	AGCCTGTGCA	CATCACATATGACATC	CTTTTAGAGTCAG	TTTATCCATCTTTAGTCTAC	180
Sbjct	913	AGCCTGTGCA	CATCACATATGACATCO	CCTTTTAGAGTCAG	TTTATCCATCTTTAGTCTAC	854
Query	181	ATTTCAAGTG	ICCTGCAAAAATTGTT(STCGTTCCAGACGT	TTGGATTTCCGTCGCTCCGG	240
Sbjct	853	ATTTCAAGTG	ICCTGCAAAAATTGTT	STCGTTCCAGACGT	TTGGATTTCCGTCGCTCCGG	794
Query	241	TCAACGCAGT	GTGCATTGCTCCTTCT	GTGATCCTAGTAC	GACTACTTCCTGCTTCTTCG	300
Sbjct	793	TCAACGCAGT	GTGCATTGCTCCTTCT	GTGATCCTAGTAC	GACTACTTCCTGCTTCTTCG	734
Query	301	CATGAGCTGT	CTTAAATGTCACCAGCA	AATCTTGTCTGTT	CCAAGTTTCTTGTGATGTTG	360
Sbjct	733	CATGAGCTGT	CTTAAATGTCACCAGCA	AATCTTGTCTGTT	CCAAGTTTCTTGTGATGTTG	674
Query	361	AAGCTCCCGA	GGTCCAAGGCAGTGGT	AGGTCTAGAAACCA	TTGTTTGTGGACTAGCCATG	420
Sbjct	673	AAGCTCCCGA	GGTCCAAGGCAGTGGT	AGGTCTAGAAACCA	TTGTTTGTGGACTAGCCATG	614
Query	421	ATTTTTCTTT	CATTGTCAACAACACC	ATTTCATTGAAGTC	TAGTCCTGTTCTAGGTGAAC	480
Sbjct	613	ATTTTTCTTT	CATTGTCAACAACACC	ATTTCATTGAAGTC	TAGTCCTGTTCTAGGTGAAC	554

Phylogenetic analysis of Dengue virus type 1 envelope genes detected from patients/mosquitoes

Dengue virus is divided into four serotypes, and serotype 1 is further divided into four genotypes.